000 02941cam a22004817a 4500
001 23248697
003 OSt
005 20250306114240.0
008 230728t20232023caua 001 0 eng d
010 _a 2023278332
015 _aGBC307044
_2bnb
016 7 _a020868348
_2Uk
020 _a9789355422194 (pbk.)
035 _a(OCoLC)on1313074094
040 _aYDX
_beng
_cYDX
_dBDX
_dUKMGB
_dOCLCQ
_dGO9
_dOCLCF
_dDLC
042 _alccopycat
050 0 0 _aQ325.5
_b.P78 2023
082 0 4 _a006.31
_223
_bPRU.Y
100 1 _aPruksachatkun, Yada,
_eauthor.
_931806
245 1 0 _aPracticing trustworthy machine learning :
_bconsistent, transparent, and fair AI pipelines /
_cby Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar.
246 3 _aConsistent, transparent, and fair artifical intelligence pipelines
250 _a1st ed.
264 1 _aAmerica;
_aBoston :
_bO'Reilly,
_c2023.
264 4 _c©2023
300 _axxiv, 274 p.
_billustrations ;
_c23 cm
336 _atext
_2rdacontent
337 _aunmediated
_2rdamedia
338 _avolume
_2rdacarrier
500 _aIncludes index.
505 0 0 _tPreface --
_tPrivacy --
_tFairness and bias --
_tModel explainability and interpretability --
_tRobustness --
_tSecure and trustworthy data generation --
_tMore state-of-the-art research questions --
_tFrom theory to practice --
_tAn ecosystem of trust --
_tSynthetic data generation tools --
_tOther interpretability and explainability tool kits --
_tIndex --
_tAbout the authors
520 _aWith the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. Many books on the subject offer deep dives into theories and concepts. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable. Authors Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar translate best practices in the academic literature for curating datasets and building models into a blueprint for building industry-grade trusted ML systems. With this book, engineers and data scientists will gain a much-needed foundation for releasing trustworthy ML applications into a noisy, messy, and often hostile world. --
_cProvided by publisher.
650 0 _aMachine learning.
650 0 _aArtificial intelligence
_xPhilosophy.
_931807
650 0 _aAlgorithms.
_931808
650 0 _aData mining.
650 7 _aMachine learning.
_2fast
_0(OCoLC)fst01004795
700 1 _aMcAteer, Matthew,
_eauthor.
_931809
700 1 _aMajumdar, Subhabrata,
_eauthor.
_931810
856 4 2 _zSupplemental information and resources
_uhttps://github.com/matthew-mcateer/practicing_trustworthy_machine_learning
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_c1
_e23
_n0
999 _c429221
_d429221