TY - BOOK AU - Khutoryanskiy,Vitaliy V. AU - Georgiou,Theoni TI - Temperature-responsive polymers: chemistry, properties and applications SN - 9781119157786 U1 - 668.9 23 PY - 2018/// KW - Thermoresponsive polymers KW - Polymères thermosensibles KW - fast N1 - Includes bibliographical references and index; Part I; Chemistry; p. 1 --; 1; Poly(N-isopropylacrylamide): Physicochemical Properties and Biomedical Applications; p. 3; Marzieh Najafi and Erik Hebels and Wim F. Hennink and Tina Vermanden --; 1.2; PNIPAM as Thermosensitive Polymer; p. 4 --; 1.3; Physical Properties of PNIPAM; p. 5 --; 1.3.1; Phase Behavior of PNIPAM in Water/Alcohol Mixtures; p. 5 --; 1.3.2; Effect of Concentration and Molecular Weight of PNIPAM on LCST; p. 5 --; 1.3.3; Effect of Surfactants on LCST; p. 7 --; 1.3.4; Effect of Salts on LCST; p. 7 --; 1.4; Common Methods for Polymerization of NIPAM; p. 8 --; 1.4.1; Free Radical Polymerization; p. 8 --; 1.4.2; Living Radical Polymerization; p. 9 --; 1.4.2.1; ATRP of NIPAM; p. 10 --; 1.4.2.2; RAFT Polymerization of NIPAM; p. 11 --; 1.5; Dual Sensitive Systems; p. 12 --; 1.5.1; pH and Thermosensitive Systems; p. 12 --; 1.5.2; Reduction-Sensitive and Thermosensitive Systems; p. 13 --; 1.5.3; Hybrid-Thermosensitive Materials; p. 13 --; 1.6; Bioconjugation of PNIPAM; p. 15 --; 1.6.1; Protein-PNIPAIVI Conjugates; p. 16 --; 1.6.2; Peptide-PNIPAM Conjugates; p. 18 --; 1.6.3; Nucleic Acid-PNIPAM Conjugates; p. 21 --; 1.7; Liposome Surface Modification with PNIPAM; p. 21 --; 1.8; Applications of PNIPAM in Cell Culture; p. 22 --; 1.9; Crosslinking Methods for Polymers; p. 23 --; 1.9.1; Crosslinking in PNIPAM-Based Hydrogels; p. 23 --; 1.9.2; Crosslinking of PNIPAM-Based Micelles; p. 26 --; 1.9.2.1; Shell Crosslinked (SCL); p. 26 --; 1.9.2.2; Core Crosslinked (CCL); p. 27 --; 1.10; Conclusion and Outlook of Applications of PNIPAM; p. 27 --; 2; Thermoresponsive Multiblock Copolymers: Chemistry, Properties and Applications; p. 35; Anna P. Constantinou and Theoni K. Georgiou --; 2.2; Chemistry of Thermoresponsive Block-based Copolymers; p. 35 --; 2.3; Architecture, Number of Blocks and Block Sequence; p. 38 --; 2.3.1; Why the Block Structure?; p. 38 --; 2.3.2; Triblock Copolymers; p. 39 --; 2.3.2.1; Micelles; p. 40 --; 2.3.2.2; Gels; p. 45 --; 2.3.2.3; Films and Membranes; p. 52 --; 2.3.3; Tetrablock Copolymers; p. 53 --; 2.3.4; Pentablock Copolymers; p. 54 --; 2.3.4.1; Pluronic® Based; p. 54 --; 2.3.4.2; Non-pluronic Based; p. 56 --; 2.3.5; Multiblock Copolymers; p. 57 --; 3; Star-shaped Poly(2-alkyl-2-oxazolines): Synthesis and Properties; p. 67; Andrey V. Tenkovtsev and Alina I. Amirova and Alexander P. Filippov --; 3.2; Synthesis of Star-shaped Poly(2-alkyl-2-oxazolines); p. 68 --; 3.3; Properties of Star-shaped Poly(2-alkyl-2-oxazolines); p. 78 --; 4; Poly(N-vinylcaprolactarn): From Polymer Synthesis to Smart Self-assemblies; p. 93; Fei Liu and Veronika Korlovskaya and Eugenia Kharlampieva --; 4.2; Synthesis of PVCL Homo- and Copolymers; p. 93 --; 4.2.1; Synthesis of Statistical PVCL Copolymers; p. 95 --; 4.2.2; Synthesis of PVCL Block Copolymers; p. 97 --; 4.2.3; Other PVCL-based Copolymers; p. 99 --; 4.3; Properties of PVCL in Aqueous Solutions; p. 99 --; 4.3.1; Dependence of the LCST of PVCL on Molecular Weight and Polymer Concentration; p. 99 --; 4.3.2; LCST Dependence on Chemical Composition; p. 100 --; 4.3.3; The Effect of Salt on the PVCL Temperature Response; p. 102 --; 4.3.4; The Effect of Solvent on PVCL Temperature Response; p. 102 --; 4.4; Assembly of PVCL-based Polymers in Solution; p. 102 --; 4.4.1; PVCL Interpolymer Complexes; p. 102 --; 4.4.2; PVCL-based Micelles; p. 103 --; 4.4.3; Self-assembly of PVCL-based Copolymers into Polymersomes; p. 105 --; 4.5; Templated Assemblies of PVCL Polymers; p. 107 --; 4.5.1; Hydrogen-bonded PVCL-based Multilayers; p. 107 --; 4.5.1.1; pH-sensitive Hydrogen-bonded PVCL Multilayers; p. 107 --; 4.5.1.2; Enzymatically Sensitive Hydrogen-bonded PVCL Multilayers; p. 108 --; 4.5.2; Multilayer Hydrogels of PVCL; p. 110 --; 4.6; Outlook and Perspectives; p. 113 --; 5; Sodium Alginate Grafted with Poly(N-isopropylacrylarnide); p. 121; Catalina N. Cheaburu-Yilmaz and Cornelia Vasile and Oana-Nicoleta Ciocoiu and Georgios Staikos --; 5.1; Alginic Acid; p. 121 --; 5.1.1; Monomeric and Polymeric Structure of Alginates; p. 121 --; 5.2; Poly(N-Isopropylacrylamide) and Thermoresponsive Properties; p. 122 --; 5.3; Synthesis and Characterization of Alginate-graft-PNIPAM Copolymers; p. 123 --; 5.4; Solution Properties; p. 124 --; 5.4.1; Turbidimetry; p. 124 --; 5.4.2; Fluorescence; p. 124 --; 5.4.3; Rheology; p. 126 --; 5.4.4; Degradability; p. 130 --; 5.4.5; Biocompatibility; p. 131 --; 5.4.5.1; Cytotoxicity; p. 132 --; 5.4.5.2; Pharmaceutical and Medical Applications; p. 135 --; 6; Multi-stimuli-responsive Polymers Based on Calix[4]arenes and Dibenzo-18-crown-6-ethers; p. 145; Szymon Wiktorowicz and Heikki Tenhu and Vladimir Aseyev --; 6.2; Single-stimuli-responsive Polymers; p. 146 --; 6.2.1; Thermo-responsive Polymers in Polar Media; p. 147 --; 6.2.2; pH-responsive Polymers; p. 148 --; 6.2.3; Photoresponsive Polymers; p. 148 --; 6.2.3; Other Single-stimuli-responsive Polymers; p. 150 --; 6.3; Multi-stimuli-responsive Polymers; p. 150 --; 6.4; Poly(azocalix[4]arene)s and Poly(azodibenzo-18-crown-6-ether)s; p. 151 --; 6.4.1; Calixarenes; p. 151 --; 6.4.2; Crown Ethers; p. 152 --; 6.4.3; Structural Units of Poly(azocalix[4]arene)s; p. 153 --; 6.4.4; Structural Units of Poly(azodibenzo-18-crown-6-ether)s; p. 154 --; 6.5; Photoisomerization; p. 154 --; 6.6; Host-guest Interactions; p. 156 --; 6.7; Thermo-responsiveness; p. 158 --; 6.7.1; LCST: Tegylated Poly(azocalix[4]arene)s in Water; p. 158 --; 6.7.2; UCST: Tegylated Poly(azocalix[4]arene)s in Alcohols; p. 159 --; 6.7.3; UCST and Photoisomerization of Tegylated Poly(azocalix[4]arene)s; p. 160 --; 6.7.4; UCST and Poly(azodibenzo-18-crown-6-ether)s; p. 161 --; 6.7.5; UCST and Photoisomerization of Poly(azodibenzo-18-crown-6-ether)s; p. 162 --; 6.7.6; UCST in Water-alcohol Mixtures; p. 162 --; 6.8; Solvatochromism and pH Sensitivity; p. 163 --; Part II; Characterization of Temperature-responsive Polymers; p. 175 --; 7; Small-Angle X-ray and Neutron Scattering of Temperature-Responsive Polymers in Solutions; p. 177; Sergey K. Filippov and Martin Hruby and Petr Stepanek --; 7.2; Temperature-responsive Homopolymers; p. 179 --; 7.3; Hydrophobically Modified Polymers; p. 182 --; 7.4; Cross-Linked Temperature-Sensitive Polymers and Gels; p. 184 --; 7.5; Temperature-Responsive Block Copolymers; p. 185 --; 7.6; Hybrid Nanoparticles; p. 187 --; 7.7; Gradient Temperature-Responsive Polymers; p. 188 --; 7.8; Multi-responsive Copolymers; p. 189 --; 8; Infrared and Raman Spectroscopy of Temperature-Responsive Polymers; p. 197; Yasushi Maeda --; 8.2; Experimental Methods to Measure IR and Raman Spectra of Aqueous Solutions; p. 198 --; 8.3; Poly(N-substituted acrylarnide)s; p. 200 --; 8.3.1; Overall Spectral Change; p. 200 --; 8.3.2; Amide Bands; p. 202 --; 8.3.3; C-H Stretching Bands; p. 204 --; 8.3.4; C-D Stretching Band; p. 206 --; 8.4; Poly(vinyl ether)s; p. 207 --; 8.5; Poly(meth)acrylates; p. 208 --; 8.6; Effects of Additives on Phase Behavior; p. 210 --; 8.7; Temperature-Responsive Copolymers and Gels; p. 217 --; 9; Application of NMR Spectroscopy to Study Thermoresponsive PolymersJirí Spêvácek; p. 225 --; 9.2; Coil-Globule Phase Transition and Its Manifestation in NMR Spectra; p. 225 --; 9.3; Temperature Dependences of High-Resolution NMR Spectra: Phase-Separated Fraction p; p. 227 --; 9.4; Multicomponent Polymer Systems; p. 230 --; 9.5; Effects of Low-Molecular-Weight Additives on Phase Transition; p. 234 --; 9.6; Behavior of Water at the Phase Transition; p. 236 --; 10; Polarized Luminescence Studies of Nanosecond Dynamics of Thermosensitive Polymers in Aqueous Solutions; p. 249; Vladimir D. Pautov and Tatiana N. Nekrasova and Tatiana D. Anan'eva and Ruslan Y. Smyslov --; 10.2; Theoretical Part; p. 250 --; 10.2.1; Polarization of Luminescence; p. 250 --; 10.2.2; The Use of Polarized Luminescence in the Studies of Nanosecond Dynamics of Macromolecules; p. 253 --; 10.3; Experimental Part; p. 258 --; 10.3.1; Methods of Synthesis of Polymers Containing Luminescent Markers; p. 258 --; 10.3.2; Technique for Measurement of Luminescence Polarization; p. 260 --; 10.3.3; Thermosensitive Water-Soluble Polymers; p. 263 --; 10.3.4; pH and Thermosensitive Water-Soluble Polymers; p. 268 --; 10.3.5; Temperature-Induced Transitions in Polymers in Nonaqueous Solutions; p. 271 --; Part III; Applications of Temperature-responsive Polymers; p. 279 --; 11; Applications of Temperature-Responsive Polymers Grafted onto Solid Core Nanoparticles; p. 281; Edward D.H. Mansfield and Adrian C. Williams and Vitaliy V. Khutoryanskiy --; 11.2; Silica Nanoparticles; p. 282 --; 11.2.1; pNIPAM-functionalised Silica Nanoparticles; p. 282 --; 11.2.2; Poloxamer-functionalised Silica Nanoparticles; p. 284 --; 11.2.3; Other Polymers; p. 286 --; 11.3; Metallic Nanoparticles; p. 286 --; 11.3.1; pNIPAM-functionalised Metallic Nanoparticles; p. 287 --; 11.3.2; Poloxamer-functionalised Metallic Nanoparticles; p. 288; 11.3.3; Elastin-functionalised Metallic Nanoparticles; p. 288 --; 11.3.4; Other Polymer-functionalised Metallic Nanoparticles; p. 289 --; 11.4; Magnetic Nanoparticles; p. 290 --; 11.4.1; pNIPAM-functionalised Magnetic Nanoparticles; p. 290 --; 11.4.2; Poloxamer-functionalised Magnetic Nanoparticles; p. 291 --; 11.4.3; Other TRP-functionalised Magnetic Nanoparticles; p. 293 --; 12; Temperature-responsive Polymers for Tissue Engineering; p. 301; Kenichi Nagase and Masayuki Yamato and Teruo Okano --; 12.1.1; Thermo-responsive Cell Culture Dishes and Cell Sheets; p. 301 --; 12.1.2; Thermo-responsive Cell Culture Dishes Prepared by Electron-beam-induced Polymerization; p. 302 --; 12.1.3; Thermo-responsive Cell Culture Dishes for Enhancing Cell Adhesion and Proliferation by Immobilized Biological Ligands; p. 303 --; 12.1.4; Thermo-responsive Cell Culture Dish Prepared by Living Radical Polymerization; p. 304 --; 12.1.5; Patterned Thermo-responsive Cell Culture Substrates; p. 306 --; 12.1.6; Thermo-responsive Surfaces for Cell Separation; p. 309 --; 13; Thermogel Polymers for Injectable Drug Delivery Systems; p. 313; Vidhi M. Shah and Duc X. Nguyen and Deepa A. Rao and Raid G. Alany and Adam W.G. Alani --; 13.2; Pluronics®; p. 314 --; 13.3; Polyester-based Polymers; p. 315 --; 13.4; Chitosan and Derivatives; p. 317 --; 13.5; Polypeptides; p. 318 --; 13.6; Clinical Application of Thermogel Polymers; p. 319 --; 13.6.1; Ocular Delivery; p. 319 --; 13.6.2; Nasal Delivery; p. 320 --; 13.6.3; Antitumor Delivery/Drug Delivery Systems; p. 321 --; 14; Thermoresponsive Electrospun Polymer-based (Nano)fibers; p. 329; Mariliz Achilleos and Theodora Krasia-Christoforou --; 14.2; Basic Principles of Electrospinning; p. 330 --; 14.3; PNIPAM-based Electrospun (Nano)fibers; p. 332 --; 14.3.1; Temperature-triggered Wettability; p. 332 --; 14.3.2; Biomedicine; p. 335 --; 14.3.2.1; Drug Delivery; p. 336 --; 14.3.2.2; Tissue Engineering; p. 339 --; 14.3.2.3; Biosensing; p. 341 --; 14.3.2.4; Solid-phase Microextraction; p. 341 --; 14.3.2.5; Molecular Recognition; p. 342 --; 14.3.2.6; Organic-Inorganic PNIPAM-based Electrospun (Nano)fibers; p. 342 --; 14.3.3; Sensing; p. 343 --; 14.4; Other Types of Thermoresponsive Electrospun (Nano)fibers; p. 345 --; 15; Catalysis by Thermoresponsive Polymers; p. 357; Natalya A. Dolya and Sarkyt E. Kudaibergenov --; 15.2; Metal Complexes Immobilized Within Thermosensitive Polymers; p. 358 --; 15.3; Thermoresponsive Polyampholytes; p. 358 --; 15.4; Thermosensitive Hydrogels in Catalysis; p. 361 --; 15.5; Thermoresponsive Catalytically Active Nano- and Microgels, Spheres, Capsules, and Micelles; p. 364 --; 15.6; Thermosensitive Self-Assemblies; p. 367 --; 15.7; Mono- and Bimetallic Nanoparticles Stabilized by Thermoresponsive Polymers; p. 368 --; 15.8; Enzymes-Embedded Thermoresponsive Polymers; p. 369 --; 15.9; Immobilization of Magnetic Nanoparticles into the Matrix of Thermoresponsive Polymers for Efficient Separation of Catalysts; p. 369 ER -