Savitribai Phule Pune University, Pune

Jayakar Knowledge Resource Centre

Temperature-responsive polymers : chemistry, properties and applications / ed by Vitaliy V. Khutoryanskiy, and Theoni K. Georgiou. English.

Contributor(s): Khutoryanskiy, Vitaliy V [editor.] | Georgiou, Theoni [editor.]Material type: TextTextCopyright date: ©2018Edition: 1st edDescription: xxii, 384 p. illustrations ; 25 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9781119157786Subject(s): Thermoresponsive polymers | Polymères thermosensibles | Thermoresponsive polymersAdditional physical formats: Ebook version :: No titleDDC classification: 668.9
Contents:
Part I Chemistry p. 1 -- 1 Poly(N-isopropylacrylamide): Physicochemical Properties and Biomedical Applications p. 3 / Marzieh Najafi and Erik Hebels and Wim F. Hennink and Tina Vermanden -- 1.2 PNIPAM as Thermosensitive Polymer p. 4 -- 1.3 Physical Properties of PNIPAM p. 5 -- 1.3.1 Phase Behavior of PNIPAM in Water/Alcohol Mixtures p. 5 -- 1.3.2 Effect of Concentration and Molecular Weight of PNIPAM on LCST p. 5 -- 1.3.3 Effect of Surfactants on LCST p. 7 -- 1.3.4 Effect of Salts on LCST p. 7 -- 1.4 Common Methods for Polymerization of NIPAM p. 8 -- 1.4.1 Free Radical Polymerization p. 8 -- 1.4.2 Living Radical Polymerization p. 9 -- 1.4.2.1 ATRP of NIPAM p. 10 -- 1.4.2.2 RAFT Polymerization of NIPAM p. 11 -- 1.5 Dual Sensitive Systems p. 12 -- 1.5.1 pH and Thermosensitive Systems p. 12 -- 1.5.2 Reduction-Sensitive and Thermosensitive Systems p. 13 -- 1.5.3 Hybrid-Thermosensitive Materials p. 13 -- 1.6 Bioconjugation of PNIPAM p. 15 -- 1.6.1 Protein-PNIPAIVI Conjugates p. 16 -- 1.6.2 Peptide-PNIPAM Conjugates p. 18 -- 1.6.3 Nucleic Acid-PNIPAM Conjugates p. 21 -- 1.7 Liposome Surface Modification with PNIPAM p. 21 -- 1.8 Applications of PNIPAM in Cell Culture p. 22 -- 1.9 Crosslinking Methods for Polymers p. 23 -- 1.9.1 Crosslinking in PNIPAM-Based Hydrogels p. 23 -- 1.9.2 Crosslinking of PNIPAM-Based Micelles p. 26 -- 1.9.2.1 Shell Crosslinked (SCL) p. 26 -- 1.9.2.2 Core Crosslinked (CCL) p. 27 -- 1.10 Conclusion and Outlook of Applications of PNIPAM p. 27 -- 2 Thermoresponsive Multiblock Copolymers: Chemistry, Properties and Applications p. 35 / Anna P. Constantinou and Theoni K. Georgiou -- 2.2 Chemistry of Thermoresponsive Block-based Copolymers p. 35 -- 2.3 Architecture, Number of Blocks and Block Sequence p. 38 -- 2.3.1 Why the Block Structure? p. 38 -- 2.3.2 Triblock Copolymers p. 39 -- 2.3.2.1 Micelles p. 40 -- 2.3.2.2 Gels p. 45 -- 2.3.2.3 Films and Membranes p. 52 -- 2.3.3 Tetrablock Copolymers p. 53 -- 2.3.4 Pentablock Copolymers p. 54 -- 2.3.4.1 Pluronic® Based p. 54 -- 2.3.4.2 Non-pluronic Based p. 56 -- 2.3.5 Multiblock Copolymers p. 57 -- 3 Star-shaped Poly(2-alkyl-2-oxazolines): Synthesis and Properties p. 67 / Andrey V. Tenkovtsev and Alina I. Amirova and Alexander P. Filippov -- 3.2 Synthesis of Star-shaped Poly(2-alkyl-2-oxazolines) p. 68 -- 3.3 Properties of Star-shaped Poly(2-alkyl-2-oxazolines) p. 78 -- 4 Poly(N-vinylcaprolactarn): From Polymer Synthesis to Smart Self-assemblies p. 93 / Fei Liu and Veronika Korlovskaya and Eugenia Kharlampieva -- 4.2 Synthesis of PVCL Homo- and Copolymers p. 93 -- 4.2.1 Synthesis of Statistical PVCL Copolymers p. 95 -- 4.2.2 Synthesis of PVCL Block Copolymers p. 97 -- 4.2.3 Other PVCL-based Copolymers p. 99 -- 4.3 Properties of PVCL in Aqueous Solutions p. 99 -- 4.3.1 Dependence of the LCST of PVCL on Molecular Weight and Polymer Concentration p. 99 -- 4.3.2 LCST Dependence on Chemical Composition p. 100 -- 4.3.3 The Effect of Salt on the PVCL Temperature Response p. 102 -- 4.3.4 The Effect of Solvent on PVCL Temperature Response p. 102 -- 4.4 Assembly of PVCL-based Polymers in Solution p. 102 -- 4.4.1 PVCL Interpolymer Complexes p. 102 -- 4.4.2 PVCL-based Micelles p. 103 -- 4.4.3 Self-assembly of PVCL-based Copolymers into Polymersomes p. 105 -- 4.5 Templated Assemblies of PVCL Polymers p. 107 -- 4.5.1 Hydrogen-bonded PVCL-based Multilayers p. 107 -- 4.5.1.1 pH-sensitive Hydrogen-bonded PVCL Multilayers p. 107 -- 4.5.1.2 Enzymatically Sensitive Hydrogen-bonded PVCL Multilayers p. 108 -- 4.5.2 Multilayer Hydrogels of PVCL p. 110 -- 4.6 Outlook and Perspectives p. 113 -- 5 Sodium Alginate Grafted with Poly(N-isopropylacrylarnide) p. 121 / Catalina N. Cheaburu-Yilmaz and Cornelia Vasile and Oana-Nicoleta Ciocoiu and Georgios Staikos -- 5.1 Alginic Acid p. 121 -- 5.1.1 Monomeric and Polymeric Structure of Alginates p. 121 -- 5.2 Poly(N-Isopropylacrylamide) and Thermoresponsive Properties p. 122 -- 5.3 Synthesis and Characterization of Alginate-graft-PNIPAM Copolymers p. 123 -- 5.4 Solution Properties p. 124 -- 5.4.1 Turbidimetry p. 124 -- 5.4.2 Fluorescence p. 124 -- 5.4.3 Rheology p. 126 -- 5.4.4 Degradability p. 130 -- 5.4.5 Biocompatibility p. 131 -- 5.4.5.1 Cytotoxicity p. 132 -- 5.4.5.2 Pharmaceutical and Medical Applications p. 135 -- 6 Multi-stimuli-responsive Polymers Based on Calix[4]arenes and Dibenzo-18-crown-6-ethers p. 145 / Szymon Wiktorowicz and Heikki Tenhu and Vladimir Aseyev -- 6.2 Single-stimuli-responsive Polymers p. 146 -- 6.2.1 Thermo-responsive Polymers in Polar Media p. 147 -- 6.2.2 pH-responsive Polymers p. 148 -- 6.2.3 Photoresponsive Polymers p. 148 -- 6.2.3 Other Single-stimuli-responsive Polymers p. 150 -- 6.3 Multi-stimuli-responsive Polymers p. 150 -- 6.4 Poly(azocalix[4]arene)s and Poly(azodibenzo-18-crown-6-ether)s p. 151 -- 6.4.1 Calixarenes p. 151 -- 6.4.2 Crown Ethers p. 152 -- 6.4.3 Structural Units of Poly(azocalix[4]arene)s p. 153 -- 6.4.4 Structural Units of Poly(azodibenzo-18-crown-6-ether)s p. 154 -- 6.5 Photoisomerization p. 154 -- 6.6 Host-guest Interactions p. 156 -- 6.7 Thermo-responsiveness p. 158 -- 6.7.1 LCST: Tegylated Poly(azocalix[4]arene)s in Water p. 158 -- 6.7.2 UCST: Tegylated Poly(azocalix[4]arene)s in Alcohols p. 159 -- 6.7.3 UCST and Photoisomerization of Tegylated Poly(azocalix[4]arene)s p. 160 -- 6.7.4 UCST and Poly(azodibenzo-18-crown-6-ether)s p. 161 -- 6.7.5 UCST and Photoisomerization of Poly(azodibenzo-18-crown-6-ether)s p. 162 -- 6.7.6 UCST in Water-alcohol Mixtures p. 162 -- 6.8 Solvatochromism and pH Sensitivity p. 163 -- Part II Characterization of Temperature-responsive Polymers p. 175 -- 7 Small-Angle X-ray and Neutron Scattering of Temperature-Responsive Polymers in Solutions p. 177 / Sergey K. Filippov and Martin Hruby and Petr Stepanek -- 7.2 Temperature-responsive Homopolymers p. 179 -- 7.3 Hydrophobically Modified Polymers p. 182 -- 7.4 Cross-Linked Temperature-Sensitive Polymers and Gels p. 184 -- 7.5 Temperature-Responsive Block Copolymers p. 185 -- 7.6 Hybrid Nanoparticles p. 187 -- 7.7 Gradient Temperature-Responsive Polymers p. 188 -- 7.8 Multi-responsive Copolymers p. 189 -- 8 Infrared and Raman Spectroscopy of Temperature-Responsive Polymers p. 197 / Yasushi Maeda -- 8.2 Experimental Methods to Measure IR and Raman Spectra of Aqueous Solutions p. 198 -- 8.3 Poly(N-substituted acrylarnide)s p. 200 -- 8.3.1 Overall Spectral Change p. 200 -- 8.3.2 Amide Bands p. 202 -- 8.3.3 C-H Stretching Bands p. 204 -- 8.3.4 C-D Stretching Band p. 206 -- 8.4 Poly(vinyl ether)s p. 207 -- 8.5 Poly(meth)acrylates p. 208 -- 8.6 Effects of Additives on Phase Behavior p. 210 -- 8.7 Temperature-Responsive Copolymers and Gels p. 217 -- 9 Application of NMR Spectroscopy to Study Thermoresponsive PolymersJirí Spêvácek p. 225 -- 9.2 Coil-Globule Phase Transition and Its Manifestation in NMR Spectra p. 225 -- 9.3 Temperature Dependences of High-Resolution NMR Spectra: Phase-Separated Fraction p p. 227 -- 9.4 Multicomponent Polymer Systems p. 230 -- 9.5 Effects of Low-Molecular-Weight Additives on Phase Transition p. 234 -- 9.6 Behavior of Water at the Phase Transition p. 236 -- 10 Polarized Luminescence Studies of Nanosecond Dynamics of Thermosensitive Polymers in Aqueous Solutions p. 249 / Vladimir D. Pautov and Tatiana N. Nekrasova and Tatiana D. Anan'eva and Ruslan Y. Smyslov -- 10.2 Theoretical Part p. 250 -- 10.2.1 Polarization of Luminescence p. 250 -- 10.2.2 The Use of Polarized Luminescence in the Studies of Nanosecond Dynamics of Macromolecules p. 253 -- 10.3 Experimental Part p. 258 -- 10.3.1 Methods of Synthesis of Polymers Containing Luminescent Markers p. 258 -- 10.3.2 Technique for Measurement of Luminescence Polarization p. 260 -- 10.3.3 Thermosensitive Water-Soluble Polymers p. 263 -- 10.3.4 pH and Thermosensitive Water-Soluble Polymers p. 268 -- 10.3.5 Temperature-Induced Transitions in Polymers in Nonaqueous Solutions p. 271 -- Part III Applications of Temperature-responsive Polymers p. 279 -- 11 Applications of Temperature-Responsive Polymers Grafted onto Solid Core Nanoparticles p. 281 / Edward D.H. Mansfield and Adrian C. Williams and Vitaliy V. Khutoryanskiy -- 11.2 Silica Nanoparticles p. 282 -- 11.2.1 pNIPAM-functionalised Silica Nanoparticles p. 282 -- 11.2.2 Poloxamer-functionalised Silica Nanoparticles p. 284 -- 11.2.3 Other Polymers p. 286 -- 11.3 Metallic Nanoparticles p. 286 -- 11.3.1 pNIPAM-functionalised Metallic Nanoparticles p. 287 -- 11.3.2 Poloxamer-functionalised Metallic Nanoparticles p. 288
11.3.3 Elastin-functionalised Metallic Nanoparticles p. 288 -- 11.3.4 Other Polymer-functionalised Metallic Nanoparticles p. 289 -- 11.4 Magnetic Nanoparticles p. 290 -- 11.4.1 pNIPAM-functionalised Magnetic Nanoparticles p. 290 -- 11.4.2 Poloxamer-functionalised Magnetic Nanoparticles p. 291 -- 11.4.3 Other TRP-functionalised Magnetic Nanoparticles p. 293 -- 12 Temperature-responsive Polymers for Tissue Engineering p. 301 / Kenichi Nagase and Masayuki Yamato and Teruo Okano -- 12.1.1 Thermo-responsive Cell Culture Dishes and Cell Sheets p. 301 -- 12.1.2 Thermo-responsive Cell Culture Dishes Prepared by Electron-beam-induced Polymerization p. 302 -- 12.1.3 Thermo-responsive Cell Culture Dishes for Enhancing Cell Adhesion and Proliferation by Immobilized Biological Ligands p. 303 -- 12.1.4 Thermo-responsive Cell Culture Dish Prepared by Living Radical Polymerization p. 304 -- 12.1.5 Patterned Thermo-responsive Cell Culture Substrates p. 306 -- 12.1.6 Thermo-responsive Surfaces for Cell Separation p. 309 -- 13 Thermogel Polymers for Injectable Drug Delivery Systems p. 313 / Vidhi M. Shah and Duc X. Nguyen and Deepa A. Rao and Raid G. Alany and Adam W.G. Alani -- 13.2 Pluronics<sup>®</sup> p. 314 -- 13.3 Polyester-based Polymers p. 315 -- 13.4 Chitosan and Derivatives p. 317 -- 13.5 Polypeptides p. 318 -- 13.6 Clinical Application of Thermogel Polymers p. 319 -- 13.6.1 Ocular Delivery p. 319 -- 13.6.2 Nasal Delivery p. 320 -- 13.6.3 Antitumor Delivery/Drug Delivery Systems p. 321 -- 14 Thermoresponsive Electrospun Polymer-based (Nano)fibers p. 329 / Mariliz Achilleos and Theodora Krasia-Christoforou -- 14.2 Basic Principles of Electrospinning p. 330 -- 14.3 PNIPAM-based Electrospun (Nano)fibers p. 332 -- 14.3.1 Temperature-triggered Wettability p. 332 -- 14.3.2 Biomedicine p. 335 -- 14.3.2.1 Drug Delivery p. 336 -- 14.3.2.2 Tissue Engineering p. 339 -- 14.3.2.3 Biosensing p. 341 -- 14.3.2.4 Solid-phase Microextraction p. 341 -- 14.3.2.5 Molecular Recognition p. 342 -- 14.3.2.6 Organic-Inorganic PNIPAM-based Electrospun (Nano)fibers p. 342 -- 14.3.3 Sensing p. 343 -- 14.4 Other Types of Thermoresponsive Electrospun (Nano)fibers p. 345 -- 15 Catalysis by Thermoresponsive Polymers p. 357 / Natalya A. Dolya and Sarkyt E. Kudaibergenov -- 15.2 Metal Complexes Immobilized Within Thermosensitive Polymers p. 358 -- 15.3 Thermoresponsive Polyampholytes p. 358 -- 15.4 Thermosensitive Hydrogels in Catalysis p. 361 -- 15.5 Thermoresponsive Catalytically Active Nano- and Microgels, Spheres, Capsules, and Micelles p. 364 -- 15.6 Thermosensitive Self-Assemblies p. 367 -- 15.7 Mono- and Bimetallic Nanoparticles Stabilized by Thermoresponsive Polymers p. 368 -- 15.8 Enzymes-Embedded Thermoresponsive Polymers p. 369 -- 15.9 Immobilization of Magnetic Nanoparticles into the Matrix of Thermoresponsive Polymers for Efficient Separation of Catalysts p. 369.
Tags from this library: No tags from this library for this title.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Status Notes Date due Barcode Item holds
Books Jayakar Knowledge Resource Centre
Jayakar Knowledge Resource Centre
668.9 KHU.V (Browse shelf(Opens below)) Available 199.95 Dollar 520189
Total holds: 0

Includes bibliographical references and index.

Part I Chemistry p. 1 -- 1 Poly(N-isopropylacrylamide): Physicochemical Properties and Biomedical Applications p. 3 / Marzieh Najafi and Erik Hebels and Wim F. Hennink and Tina Vermanden -- 1.2 PNIPAM as Thermosensitive Polymer p. 4 -- 1.3 Physical Properties of PNIPAM p. 5 -- 1.3.1 Phase Behavior of PNIPAM in Water/Alcohol Mixtures p. 5 -- 1.3.2 Effect of Concentration and Molecular Weight of PNIPAM on LCST p. 5 -- 1.3.3 Effect of Surfactants on LCST p. 7 -- 1.3.4 Effect of Salts on LCST p. 7 -- 1.4 Common Methods for Polymerization of NIPAM p. 8 -- 1.4.1 Free Radical Polymerization p. 8 -- 1.4.2 Living Radical Polymerization p. 9 -- 1.4.2.1 ATRP of NIPAM p. 10 -- 1.4.2.2 RAFT Polymerization of NIPAM p. 11 -- 1.5 Dual Sensitive Systems p. 12 -- 1.5.1 pH and Thermosensitive Systems p. 12 -- 1.5.2 Reduction-Sensitive and Thermosensitive Systems p. 13 -- 1.5.3 Hybrid-Thermosensitive Materials p. 13 -- 1.6 Bioconjugation of PNIPAM p. 15 -- 1.6.1 Protein-PNIPAIVI Conjugates p. 16 -- 1.6.2 Peptide-PNIPAM Conjugates p. 18 -- 1.6.3 Nucleic Acid-PNIPAM Conjugates p. 21 -- 1.7 Liposome Surface Modification with PNIPAM p. 21 -- 1.8 Applications of PNIPAM in Cell Culture p. 22 -- 1.9 Crosslinking Methods for Polymers p. 23 -- 1.9.1 Crosslinking in PNIPAM-Based Hydrogels p. 23 -- 1.9.2 Crosslinking of PNIPAM-Based Micelles p. 26 -- 1.9.2.1 Shell Crosslinked (SCL) p. 26 -- 1.9.2.2 Core Crosslinked (CCL) p. 27 -- 1.10 Conclusion and Outlook of Applications of PNIPAM p. 27 -- 2 Thermoresponsive Multiblock Copolymers: Chemistry, Properties and Applications p. 35 / Anna P. Constantinou and Theoni K. Georgiou -- 2.2 Chemistry of Thermoresponsive Block-based Copolymers p. 35 -- 2.3 Architecture, Number of Blocks and Block Sequence p. 38 -- 2.3.1 Why the Block Structure? p. 38 -- 2.3.2 Triblock Copolymers p. 39 -- 2.3.2.1 Micelles p. 40 -- 2.3.2.2 Gels p. 45 -- 2.3.2.3 Films and Membranes p. 52 -- 2.3.3 Tetrablock Copolymers p. 53 -- 2.3.4 Pentablock Copolymers p. 54 -- 2.3.4.1 Pluronic® Based p. 54 -- 2.3.4.2 Non-pluronic Based p. 56 -- 2.3.5 Multiblock Copolymers p. 57 -- 3 Star-shaped Poly(2-alkyl-2-oxazolines): Synthesis and Properties p. 67 / Andrey V. Tenkovtsev and Alina I. Amirova and Alexander P. Filippov -- 3.2 Synthesis of Star-shaped Poly(2-alkyl-2-oxazolines) p. 68 -- 3.3 Properties of Star-shaped Poly(2-alkyl-2-oxazolines) p. 78 -- 4 Poly(N-vinylcaprolactarn): From Polymer Synthesis to Smart Self-assemblies p. 93 / Fei Liu and Veronika Korlovskaya and Eugenia Kharlampieva -- 4.2 Synthesis of PVCL Homo- and Copolymers p. 93 -- 4.2.1 Synthesis of Statistical PVCL Copolymers p. 95 -- 4.2.2 Synthesis of PVCL Block Copolymers p. 97 -- 4.2.3 Other PVCL-based Copolymers p. 99 -- 4.3 Properties of PVCL in Aqueous Solutions p. 99 -- 4.3.1 Dependence of the LCST of PVCL on Molecular Weight and Polymer Concentration p. 99 -- 4.3.2 LCST Dependence on Chemical Composition p. 100 -- 4.3.3 The Effect of Salt on the PVCL Temperature Response p. 102 -- 4.3.4 The Effect of Solvent on PVCL Temperature Response p. 102 -- 4.4 Assembly of PVCL-based Polymers in Solution p. 102 -- 4.4.1 PVCL Interpolymer Complexes p. 102 -- 4.4.2 PVCL-based Micelles p. 103 -- 4.4.3 Self-assembly of PVCL-based Copolymers into Polymersomes p. 105 -- 4.5 Templated Assemblies of PVCL Polymers p. 107 -- 4.5.1 Hydrogen-bonded PVCL-based Multilayers p. 107 -- 4.5.1.1 pH-sensitive Hydrogen-bonded PVCL Multilayers p. 107 -- 4.5.1.2 Enzymatically Sensitive Hydrogen-bonded PVCL Multilayers p. 108 -- 4.5.2 Multilayer Hydrogels of PVCL p. 110 -- 4.6 Outlook and Perspectives p. 113 -- 5 Sodium Alginate Grafted with Poly(N-isopropylacrylarnide) p. 121 / Catalina N. Cheaburu-Yilmaz and Cornelia Vasile and Oana-Nicoleta Ciocoiu and Georgios Staikos -- 5.1 Alginic Acid p. 121 -- 5.1.1 Monomeric and Polymeric Structure of Alginates p. 121 -- 5.2 Poly(N-Isopropylacrylamide) and Thermoresponsive Properties p. 122 -- 5.3 Synthesis and Characterization of Alginate-graft-PNIPAM Copolymers p. 123 -- 5.4 Solution Properties p. 124 -- 5.4.1 Turbidimetry p. 124 -- 5.4.2 Fluorescence p. 124 -- 5.4.3 Rheology p. 126 -- 5.4.4 Degradability p. 130 -- 5.4.5 Biocompatibility p. 131 -- 5.4.5.1 Cytotoxicity p. 132 -- 5.4.5.2 Pharmaceutical and Medical Applications p. 135 -- 6 Multi-stimuli-responsive Polymers Based on Calix[4]arenes and Dibenzo-18-crown-6-ethers p. 145 / Szymon Wiktorowicz and Heikki Tenhu and Vladimir Aseyev -- 6.2 Single-stimuli-responsive Polymers p. 146 -- 6.2.1 Thermo-responsive Polymers in Polar Media p. 147 -- 6.2.2 pH-responsive Polymers p. 148 -- 6.2.3 Photoresponsive Polymers p. 148 -- 6.2.3 Other Single-stimuli-responsive Polymers p. 150 -- 6.3 Multi-stimuli-responsive Polymers p. 150 -- 6.4 Poly(azocalix[4]arene)s and Poly(azodibenzo-18-crown-6-ether)s p. 151 -- 6.4.1 Calixarenes p. 151 -- 6.4.2 Crown Ethers p. 152 -- 6.4.3 Structural Units of Poly(azocalix[4]arene)s p. 153 -- 6.4.4 Structural Units of Poly(azodibenzo-18-crown-6-ether)s p. 154 -- 6.5 Photoisomerization p. 154 -- 6.6 Host-guest Interactions p. 156 -- 6.7 Thermo-responsiveness p. 158 -- 6.7.1 LCST: Tegylated Poly(azocalix[4]arene)s in Water p. 158 -- 6.7.2 UCST: Tegylated Poly(azocalix[4]arene)s in Alcohols p. 159 -- 6.7.3 UCST and Photoisomerization of Tegylated Poly(azocalix[4]arene)s p. 160 -- 6.7.4 UCST and Poly(azodibenzo-18-crown-6-ether)s p. 161 -- 6.7.5 UCST and Photoisomerization of Poly(azodibenzo-18-crown-6-ether)s p. 162 -- 6.7.6 UCST in Water-alcohol Mixtures p. 162 -- 6.8 Solvatochromism and pH Sensitivity p. 163 -- Part II Characterization of Temperature-responsive Polymers p. 175 -- 7 Small-Angle X-ray and Neutron Scattering of Temperature-Responsive Polymers in Solutions p. 177 / Sergey K. Filippov and Martin Hruby and Petr Stepanek -- 7.2 Temperature-responsive Homopolymers p. 179 -- 7.3 Hydrophobically Modified Polymers p. 182 -- 7.4 Cross-Linked Temperature-Sensitive Polymers and Gels p. 184 -- 7.5 Temperature-Responsive Block Copolymers p. 185 -- 7.6 Hybrid Nanoparticles p. 187 -- 7.7 Gradient Temperature-Responsive Polymers p. 188 -- 7.8 Multi-responsive Copolymers p. 189 -- 8 Infrared and Raman Spectroscopy of Temperature-Responsive Polymers p. 197 / Yasushi Maeda -- 8.2 Experimental Methods to Measure IR and Raman Spectra of Aqueous Solutions p. 198 -- 8.3 Poly(N-substituted acrylarnide)s p. 200 -- 8.3.1 Overall Spectral Change p. 200 -- 8.3.2 Amide Bands p. 202 -- 8.3.3 C-H Stretching Bands p. 204 -- 8.3.4 C-D Stretching Band p. 206 -- 8.4 Poly(vinyl ether)s p. 207 -- 8.5 Poly(meth)acrylates p. 208 -- 8.6 Effects of Additives on Phase Behavior p. 210 -- 8.7 Temperature-Responsive Copolymers and Gels p. 217 -- 9 Application of NMR Spectroscopy to Study Thermoresponsive PolymersJirí Spêvácek p. 225 -- 9.2 Coil-Globule Phase Transition and Its Manifestation in NMR Spectra p. 225 -- 9.3 Temperature Dependences of High-Resolution NMR Spectra: Phase-Separated Fraction p p. 227 -- 9.4 Multicomponent Polymer Systems p. 230 -- 9.5 Effects of Low-Molecular-Weight Additives on Phase Transition p. 234 -- 9.6 Behavior of Water at the Phase Transition p. 236 -- 10 Polarized Luminescence Studies of Nanosecond Dynamics of Thermosensitive Polymers in Aqueous Solutions p. 249 / Vladimir D. Pautov and Tatiana N. Nekrasova and Tatiana D. Anan'eva and Ruslan Y. Smyslov -- 10.2 Theoretical Part p. 250 -- 10.2.1 Polarization of Luminescence p. 250 -- 10.2.2 The Use of Polarized Luminescence in the Studies of Nanosecond Dynamics of Macromolecules p. 253 -- 10.3 Experimental Part p. 258 -- 10.3.1 Methods of Synthesis of Polymers Containing Luminescent Markers p. 258 -- 10.3.2 Technique for Measurement of Luminescence Polarization p. 260 -- 10.3.3 Thermosensitive Water-Soluble Polymers p. 263 -- 10.3.4 pH and Thermosensitive Water-Soluble Polymers p. 268 -- 10.3.5 Temperature-Induced Transitions in Polymers in Nonaqueous Solutions p. 271 -- Part III Applications of Temperature-responsive Polymers p. 279 -- 11 Applications of Temperature-Responsive Polymers Grafted onto Solid Core Nanoparticles p. 281 / Edward D.H. Mansfield and Adrian C. Williams and Vitaliy V. Khutoryanskiy -- 11.2 Silica Nanoparticles p. 282 -- 11.2.1 pNIPAM-functionalised Silica Nanoparticles p. 282 -- 11.2.2 Poloxamer-functionalised Silica Nanoparticles p. 284 -- 11.2.3 Other Polymers p. 286 -- 11.3 Metallic Nanoparticles p. 286 -- 11.3.1 pNIPAM-functionalised Metallic Nanoparticles p. 287 -- 11.3.2 Poloxamer-functionalised Metallic Nanoparticles p. 288

11.3.3 Elastin-functionalised Metallic Nanoparticles p. 288 -- 11.3.4 Other Polymer-functionalised Metallic Nanoparticles p. 289 -- 11.4 Magnetic Nanoparticles p. 290 -- 11.4.1 pNIPAM-functionalised Magnetic Nanoparticles p. 290 -- 11.4.2 Poloxamer-functionalised Magnetic Nanoparticles p. 291 -- 11.4.3 Other TRP-functionalised Magnetic Nanoparticles p. 293 -- 12 Temperature-responsive Polymers for Tissue Engineering p. 301 / Kenichi Nagase and Masayuki Yamato and Teruo Okano -- 12.1.1 Thermo-responsive Cell Culture Dishes and Cell Sheets p. 301 -- 12.1.2 Thermo-responsive Cell Culture Dishes Prepared by Electron-beam-induced Polymerization p. 302 -- 12.1.3 Thermo-responsive Cell Culture Dishes for Enhancing Cell Adhesion and Proliferation by Immobilized Biological Ligands p. 303 -- 12.1.4 Thermo-responsive Cell Culture Dish Prepared by Living Radical Polymerization p. 304 -- 12.1.5 Patterned Thermo-responsive Cell Culture Substrates p. 306 -- 12.1.6 Thermo-responsive Surfaces for Cell Separation p. 309 -- 13 Thermogel Polymers for Injectable Drug Delivery Systems p. 313 / Vidhi M. Shah and Duc X. Nguyen and Deepa A. Rao and Raid G. Alany and Adam W.G. Alani -- 13.2 Pluronics<sup>®</sup> p. 314 -- 13.3 Polyester-based Polymers p. 315 -- 13.4 Chitosan and Derivatives p. 317 -- 13.5 Polypeptides p. 318 -- 13.6 Clinical Application of Thermogel Polymers p. 319 -- 13.6.1 Ocular Delivery p. 319 -- 13.6.2 Nasal Delivery p. 320 -- 13.6.3 Antitumor Delivery/Drug Delivery Systems p. 321 -- 14 Thermoresponsive Electrospun Polymer-based (Nano)fibers p. 329 / Mariliz Achilleos and Theodora Krasia-Christoforou -- 14.2 Basic Principles of Electrospinning p. 330 -- 14.3 PNIPAM-based Electrospun (Nano)fibers p. 332 -- 14.3.1 Temperature-triggered Wettability p. 332 -- 14.3.2 Biomedicine p. 335 -- 14.3.2.1 Drug Delivery p. 336 -- 14.3.2.2 Tissue Engineering p. 339 -- 14.3.2.3 Biosensing p. 341 -- 14.3.2.4 Solid-phase Microextraction p. 341 -- 14.3.2.5 Molecular Recognition p. 342 -- 14.3.2.6 Organic-Inorganic PNIPAM-based Electrospun (Nano)fibers p. 342 -- 14.3.3 Sensing p. 343 -- 14.4 Other Types of Thermoresponsive Electrospun (Nano)fibers p. 345 -- 15 Catalysis by Thermoresponsive Polymers p. 357 / Natalya A. Dolya and Sarkyt E. Kudaibergenov -- 15.2 Metal Complexes Immobilized Within Thermosensitive Polymers p. 358 -- 15.3 Thermoresponsive Polyampholytes p. 358 -- 15.4 Thermosensitive Hydrogels in Catalysis p. 361 -- 15.5 Thermoresponsive Catalytically Active Nano- and Microgels, Spheres, Capsules, and Micelles p. 364 -- 15.6 Thermosensitive Self-Assemblies p. 367 -- 15.7 Mono- and Bimetallic Nanoparticles Stabilized by Thermoresponsive Polymers p. 368 -- 15.8 Enzymes-Embedded Thermoresponsive Polymers p. 369 -- 15.9 Immobilization of Magnetic Nanoparticles into the Matrix of Thermoresponsive Polymers for Efficient Separation of Catalysts p. 369.

There are no comments on this title.

to post a comment.

Powered by Koha