Temperature-responsive polymers : chemistry, properties and applications / ed by Vitaliy V. Khutoryanskiy, and Theoni K. Georgiou. English.
Material type:
TextCopyright date: ©2018Edition: 1st edDescription: xxii, 384 p. illustrations ; 25 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9781119157786Subject(s): Thermoresponsive polymers | Polymères thermosensibles | Thermoresponsive polymersAdditional physical formats: Ebook version :: No titleDDC classification: 668.9 | Item type | Current library | Home library | Call number | Status | Notes | Date due | Barcode | Item holds |
|---|---|---|---|---|---|---|---|---|
| Books | Jayakar Knowledge Resource Centre | Jayakar Knowledge Resource Centre | 668.9 KHU.V (Browse shelf(Opens below)) | Available | 199.95 Dollar | 520189 |
Includes bibliographical references and index.
Part I Chemistry p. 1 -- 1 Poly(N-isopropylacrylamide): Physicochemical Properties and Biomedical Applications p. 3 / Marzieh Najafi and Erik Hebels and Wim F. Hennink and Tina Vermanden -- 1.2 PNIPAM as Thermosensitive Polymer p. 4 -- 1.3 Physical Properties of PNIPAM p. 5 -- 1.3.1 Phase Behavior of PNIPAM in Water/Alcohol Mixtures p. 5 -- 1.3.2 Effect of Concentration and Molecular Weight of PNIPAM on LCST p. 5 -- 1.3.3 Effect of Surfactants on LCST p. 7 -- 1.3.4 Effect of Salts on LCST p. 7 -- 1.4 Common Methods for Polymerization of NIPAM p. 8 -- 1.4.1 Free Radical Polymerization p. 8 -- 1.4.2 Living Radical Polymerization p. 9 -- 1.4.2.1 ATRP of NIPAM p. 10 -- 1.4.2.2 RAFT Polymerization of NIPAM p. 11 -- 1.5 Dual Sensitive Systems p. 12 -- 1.5.1 pH and Thermosensitive Systems p. 12 -- 1.5.2 Reduction-Sensitive and Thermosensitive Systems p. 13 -- 1.5.3 Hybrid-Thermosensitive Materials p. 13 -- 1.6 Bioconjugation of PNIPAM p. 15 -- 1.6.1 Protein-PNIPAIVI Conjugates p. 16 -- 1.6.2 Peptide-PNIPAM Conjugates p. 18 -- 1.6.3 Nucleic Acid-PNIPAM Conjugates p. 21 -- 1.7 Liposome Surface Modification with PNIPAM p. 21 -- 1.8 Applications of PNIPAM in Cell Culture p. 22 -- 1.9 Crosslinking Methods for Polymers p. 23 -- 1.9.1 Crosslinking in PNIPAM-Based Hydrogels p. 23 -- 1.9.2 Crosslinking of PNIPAM-Based Micelles p. 26 -- 1.9.2.1 Shell Crosslinked (SCL) p. 26 -- 1.9.2.2 Core Crosslinked (CCL) p. 27 -- 1.10 Conclusion and Outlook of Applications of PNIPAM p. 27 -- 2 Thermoresponsive Multiblock Copolymers: Chemistry, Properties and Applications p. 35 / Anna P. Constantinou and Theoni K. Georgiou -- 2.2 Chemistry of Thermoresponsive Block-based Copolymers p. 35 -- 2.3 Architecture, Number of Blocks and Block Sequence p. 38 -- 2.3.1 Why the Block Structure? p. 38 -- 2.3.2 Triblock Copolymers p. 39 -- 2.3.2.1 Micelles p. 40 -- 2.3.2.2 Gels p. 45 -- 2.3.2.3 Films and Membranes p. 52 -- 2.3.3 Tetrablock Copolymers p. 53 -- 2.3.4 Pentablock Copolymers p. 54 -- 2.3.4.1 Pluronic® Based p. 54 -- 2.3.4.2 Non-pluronic Based p. 56 -- 2.3.5 Multiblock Copolymers p. 57 -- 3 Star-shaped Poly(2-alkyl-2-oxazolines): Synthesis and Properties p. 67 / Andrey V. Tenkovtsev and Alina I. Amirova and Alexander P. Filippov -- 3.2 Synthesis of Star-shaped Poly(2-alkyl-2-oxazolines) p. 68 -- 3.3 Properties of Star-shaped Poly(2-alkyl-2-oxazolines) p. 78 -- 4 Poly(N-vinylcaprolactarn): From Polymer Synthesis to Smart Self-assemblies p. 93 / Fei Liu and Veronika Korlovskaya and Eugenia Kharlampieva -- 4.2 Synthesis of PVCL Homo- and Copolymers p. 93 -- 4.2.1 Synthesis of Statistical PVCL Copolymers p. 95 -- 4.2.2 Synthesis of PVCL Block Copolymers p. 97 -- 4.2.3 Other PVCL-based Copolymers p. 99 -- 4.3 Properties of PVCL in Aqueous Solutions p. 99 -- 4.3.1 Dependence of the LCST of PVCL on Molecular Weight and Polymer Concentration p. 99 -- 4.3.2 LCST Dependence on Chemical Composition p. 100 -- 4.3.3 The Effect of Salt on the PVCL Temperature Response p. 102 -- 4.3.4 The Effect of Solvent on PVCL Temperature Response p. 102 -- 4.4 Assembly of PVCL-based Polymers in Solution p. 102 -- 4.4.1 PVCL Interpolymer Complexes p. 102 -- 4.4.2 PVCL-based Micelles p. 103 -- 4.4.3 Self-assembly of PVCL-based Copolymers into Polymersomes p. 105 -- 4.5 Templated Assemblies of PVCL Polymers p. 107 -- 4.5.1 Hydrogen-bonded PVCL-based Multilayers p. 107 -- 4.5.1.1 pH-sensitive Hydrogen-bonded PVCL Multilayers p. 107 -- 4.5.1.2 Enzymatically Sensitive Hydrogen-bonded PVCL Multilayers p. 108 -- 4.5.2 Multilayer Hydrogels of PVCL p. 110 -- 4.6 Outlook and Perspectives p. 113 -- 5 Sodium Alginate Grafted with Poly(N-isopropylacrylarnide) p. 121 / Catalina N. Cheaburu-Yilmaz and Cornelia Vasile and Oana-Nicoleta Ciocoiu and Georgios Staikos -- 5.1 Alginic Acid p. 121 -- 5.1.1 Monomeric and Polymeric Structure of Alginates p. 121 -- 5.2 Poly(N-Isopropylacrylamide) and Thermoresponsive Properties p. 122 -- 5.3 Synthesis and Characterization of Alginate-graft-PNIPAM Copolymers p. 123 -- 5.4 Solution Properties p. 124 -- 5.4.1 Turbidimetry p. 124 -- 5.4.2 Fluorescence p. 124 -- 5.4.3 Rheology p. 126 -- 5.4.4 Degradability p. 130 -- 5.4.5 Biocompatibility p. 131 -- 5.4.5.1 Cytotoxicity p. 132 -- 5.4.5.2 Pharmaceutical and Medical Applications p. 135 -- 6 Multi-stimuli-responsive Polymers Based on Calix[4]arenes and Dibenzo-18-crown-6-ethers p. 145 / Szymon Wiktorowicz and Heikki Tenhu and Vladimir Aseyev -- 6.2 Single-stimuli-responsive Polymers p. 146 -- 6.2.1 Thermo-responsive Polymers in Polar Media p. 147 -- 6.2.2 pH-responsive Polymers p. 148 -- 6.2.3 Photoresponsive Polymers p. 148 -- 6.2.3 Other Single-stimuli-responsive Polymers p. 150 -- 6.3 Multi-stimuli-responsive Polymers p. 150 -- 6.4 Poly(azocalix[4]arene)s and Poly(azodibenzo-18-crown-6-ether)s p. 151 -- 6.4.1 Calixarenes p. 151 -- 6.4.2 Crown Ethers p. 152 -- 6.4.3 Structural Units of Poly(azocalix[4]arene)s p. 153 -- 6.4.4 Structural Units of Poly(azodibenzo-18-crown-6-ether)s p. 154 -- 6.5 Photoisomerization p. 154 -- 6.6 Host-guest Interactions p. 156 -- 6.7 Thermo-responsiveness p. 158 -- 6.7.1 LCST: Tegylated Poly(azocalix[4]arene)s in Water p. 158 -- 6.7.2 UCST: Tegylated Poly(azocalix[4]arene)s in Alcohols p. 159 -- 6.7.3 UCST and Photoisomerization of Tegylated Poly(azocalix[4]arene)s p. 160 -- 6.7.4 UCST and Poly(azodibenzo-18-crown-6-ether)s p. 161 -- 6.7.5 UCST and Photoisomerization of Poly(azodibenzo-18-crown-6-ether)s p. 162 -- 6.7.6 UCST in Water-alcohol Mixtures p. 162 -- 6.8 Solvatochromism and pH Sensitivity p. 163 -- Part II Characterization of Temperature-responsive Polymers p. 175 -- 7 Small-Angle X-ray and Neutron Scattering of Temperature-Responsive Polymers in Solutions p. 177 / Sergey K. Filippov and Martin Hruby and Petr Stepanek -- 7.2 Temperature-responsive Homopolymers p. 179 -- 7.3 Hydrophobically Modified Polymers p. 182 -- 7.4 Cross-Linked Temperature-Sensitive Polymers and Gels p. 184 -- 7.5 Temperature-Responsive Block Copolymers p. 185 -- 7.6 Hybrid Nanoparticles p. 187 -- 7.7 Gradient Temperature-Responsive Polymers p. 188 -- 7.8 Multi-responsive Copolymers p. 189 -- 8 Infrared and Raman Spectroscopy of Temperature-Responsive Polymers p. 197 / Yasushi Maeda -- 8.2 Experimental Methods to Measure IR and Raman Spectra of Aqueous Solutions p. 198 -- 8.3 Poly(N-substituted acrylarnide)s p. 200 -- 8.3.1 Overall Spectral Change p. 200 -- 8.3.2 Amide Bands p. 202 -- 8.3.3 C-H Stretching Bands p. 204 -- 8.3.4 C-D Stretching Band p. 206 -- 8.4 Poly(vinyl ether)s p. 207 -- 8.5 Poly(meth)acrylates p. 208 -- 8.6 Effects of Additives on Phase Behavior p. 210 -- 8.7 Temperature-Responsive Copolymers and Gels p. 217 -- 9 Application of NMR Spectroscopy to Study Thermoresponsive PolymersJirí Spêvácek p. 225 -- 9.2 Coil-Globule Phase Transition and Its Manifestation in NMR Spectra p. 225 -- 9.3 Temperature Dependences of High-Resolution NMR Spectra: Phase-Separated Fraction p p. 227 -- 9.4 Multicomponent Polymer Systems p. 230 -- 9.5 Effects of Low-Molecular-Weight Additives on Phase Transition p. 234 -- 9.6 Behavior of Water at the Phase Transition p. 236 -- 10 Polarized Luminescence Studies of Nanosecond Dynamics of Thermosensitive Polymers in Aqueous Solutions p. 249 / Vladimir D. Pautov and Tatiana N. Nekrasova and Tatiana D. Anan'eva and Ruslan Y. Smyslov -- 10.2 Theoretical Part p. 250 -- 10.2.1 Polarization of Luminescence p. 250 -- 10.2.2 The Use of Polarized Luminescence in the Studies of Nanosecond Dynamics of Macromolecules p. 253 -- 10.3 Experimental Part p. 258 -- 10.3.1 Methods of Synthesis of Polymers Containing Luminescent Markers p. 258 -- 10.3.2 Technique for Measurement of Luminescence Polarization p. 260 -- 10.3.3 Thermosensitive Water-Soluble Polymers p. 263 -- 10.3.4 pH and Thermosensitive Water-Soluble Polymers p. 268 -- 10.3.5 Temperature-Induced Transitions in Polymers in Nonaqueous Solutions p. 271 -- Part III Applications of Temperature-responsive Polymers p. 279 -- 11 Applications of Temperature-Responsive Polymers Grafted onto Solid Core Nanoparticles p. 281 / Edward D.H. Mansfield and Adrian C. Williams and Vitaliy V. Khutoryanskiy -- 11.2 Silica Nanoparticles p. 282 -- 11.2.1 pNIPAM-functionalised Silica Nanoparticles p. 282 -- 11.2.2 Poloxamer-functionalised Silica Nanoparticles p. 284 -- 11.2.3 Other Polymers p. 286 -- 11.3 Metallic Nanoparticles p. 286 -- 11.3.1 pNIPAM-functionalised Metallic Nanoparticles p. 287 -- 11.3.2 Poloxamer-functionalised Metallic Nanoparticles p. 288
11.3.3 Elastin-functionalised Metallic Nanoparticles p. 288 -- 11.3.4 Other Polymer-functionalised Metallic Nanoparticles p. 289 -- 11.4 Magnetic Nanoparticles p. 290 -- 11.4.1 pNIPAM-functionalised Magnetic Nanoparticles p. 290 -- 11.4.2 Poloxamer-functionalised Magnetic Nanoparticles p. 291 -- 11.4.3 Other TRP-functionalised Magnetic Nanoparticles p. 293 -- 12 Temperature-responsive Polymers for Tissue Engineering p. 301 / Kenichi Nagase and Masayuki Yamato and Teruo Okano -- 12.1.1 Thermo-responsive Cell Culture Dishes and Cell Sheets p. 301 -- 12.1.2 Thermo-responsive Cell Culture Dishes Prepared by Electron-beam-induced Polymerization p. 302 -- 12.1.3 Thermo-responsive Cell Culture Dishes for Enhancing Cell Adhesion and Proliferation by Immobilized Biological Ligands p. 303 -- 12.1.4 Thermo-responsive Cell Culture Dish Prepared by Living Radical Polymerization p. 304 -- 12.1.5 Patterned Thermo-responsive Cell Culture Substrates p. 306 -- 12.1.6 Thermo-responsive Surfaces for Cell Separation p. 309 -- 13 Thermogel Polymers for Injectable Drug Delivery Systems p. 313 / Vidhi M. Shah and Duc X. Nguyen and Deepa A. Rao and Raid G. Alany and Adam W.G. Alani -- 13.2 Pluronics<sup>®</sup> p. 314 -- 13.3 Polyester-based Polymers p. 315 -- 13.4 Chitosan and Derivatives p. 317 -- 13.5 Polypeptides p. 318 -- 13.6 Clinical Application of Thermogel Polymers p. 319 -- 13.6.1 Ocular Delivery p. 319 -- 13.6.2 Nasal Delivery p. 320 -- 13.6.3 Antitumor Delivery/Drug Delivery Systems p. 321 -- 14 Thermoresponsive Electrospun Polymer-based (Nano)fibers p. 329 / Mariliz Achilleos and Theodora Krasia-Christoforou -- 14.2 Basic Principles of Electrospinning p. 330 -- 14.3 PNIPAM-based Electrospun (Nano)fibers p. 332 -- 14.3.1 Temperature-triggered Wettability p. 332 -- 14.3.2 Biomedicine p. 335 -- 14.3.2.1 Drug Delivery p. 336 -- 14.3.2.2 Tissue Engineering p. 339 -- 14.3.2.3 Biosensing p. 341 -- 14.3.2.4 Solid-phase Microextraction p. 341 -- 14.3.2.5 Molecular Recognition p. 342 -- 14.3.2.6 Organic-Inorganic PNIPAM-based Electrospun (Nano)fibers p. 342 -- 14.3.3 Sensing p. 343 -- 14.4 Other Types of Thermoresponsive Electrospun (Nano)fibers p. 345 -- 15 Catalysis by Thermoresponsive Polymers p. 357 / Natalya A. Dolya and Sarkyt E. Kudaibergenov -- 15.2 Metal Complexes Immobilized Within Thermosensitive Polymers p. 358 -- 15.3 Thermoresponsive Polyampholytes p. 358 -- 15.4 Thermosensitive Hydrogels in Catalysis p. 361 -- 15.5 Thermoresponsive Catalytically Active Nano- and Microgels, Spheres, Capsules, and Micelles p. 364 -- 15.6 Thermosensitive Self-Assemblies p. 367 -- 15.7 Mono- and Bimetallic Nanoparticles Stabilized by Thermoresponsive Polymers p. 368 -- 15.8 Enzymes-Embedded Thermoresponsive Polymers p. 369 -- 15.9 Immobilization of Magnetic Nanoparticles into the Matrix of Thermoresponsive Polymers for Efficient Separation of Catalysts p. 369.
There are no comments on this title.